Quantum deformations of associative algebras and integrable systems
نویسنده
چکیده
Quantum deformations of the structure constants for a class of associative noncommutative algebras are studied. It is shown that these deformations are governed by the quantum central systems which has a geometrical meaning of vanishing Riemann curvature tensor for Christoffel symbols identified with the structure constants. A subclass of isoassociative quantum deformations is described by the oriented associativity equation and, in particular, by the WDVV equation. It is demonstrated that a wider class of weakly (non)associative quantum deformations is connected with the integrable soliton equations too. In particular, such deformations for the three-dimensional and infinite-dimensional algebras are described by the Boussinesq equation and KP hierarchy, respectively. MSC:16xx,35Q53,37K10,53Axx
منابع مشابه
Discrete integrable systems and deformations of associative algebras
Interrelations between discrete deformations of the structure constants for associative algebras and discrete integrable systems are reviewed. A theory of deformations for associative algebras is presented. Closed left ideal generated by the elements representing the multiplication table plays a central role in this theory. Deformations of the structure constants are generated by the Deformatio...
متن کاملar X iv : 0 81 1 . 47 25 v 2 [ m at h . R A ] 1 2 M ay 2 00 9 On the deformation theory of structure constants for associative algebras
Algebraic scheme for constructing deformations of structure constants for associative algebras generated by a deformation driving algebras (DDAs) is discussed. An ideal of left divisors of zero plays a central role in this construction. Deformations of associative three-dimensional algebras with the DDA being a three-dimensional Lie algebra and their connection with integrable systems are studied.
متن کامل2 8 N ov 2 00 8 On the deformation theory of structure constants for associative algebras
Algebraic scheme for constructing deformations of structure constants for associative algebras generated by a deformation driving algebras (DDAs) is proposed. An ideal of left divisors of zero plays a central role in this construction. Deformations of associative commutative three-dimensional algebras with the DDA being a three-dimensional Lie algebra and their connection with integrable system...
متن کاملNonlinear Integrable Systems
W algebras arise in the study of various nonlinear integrable systems such as: self-dual gravity, the KP and Toda hierarchies, their quasi-classical (or dispersionless) limit, etc. Twistor theory provides a geometric background for these algebras. Present state of these topics is overviewed. A few ideas on possible deformations of self-dual gravity (including quantum deformations) are presented.
متن کاملLong range integrable oscillator chains from quantum algebras
Completely integrable Hamiltonians defining classical mechanical systems of N coupled oscillators are obtained from Poisson realizations of Heisenberg–Weyl, harmonic oscillator and sl(2, IR) coalgebras. Various completely integrable deformations of such systems are constructed by considering quantum deformations of these algebras. Explicit expressions for all the deformed Hamiltonians and const...
متن کامل